手机浏览器扫描二维码访问
所以,在学术界,一个同样的公式,有好几个人在几年内同时创造出来,这并不是稀奇的事。
胡教授看一眼卓越,继续道:“非线性偏微分方程中除了kdv方程、boussinesq方程和kleino
gordon方程,还有mkdv方程、dp方程、burger方程、knowpia方程,和许多其他方程。”
“但此公式却只能解决kdv方程、boussinesq方程和kleino
gordon方程,这是有非常大的局限性的。”
“所以此方程是无法解决非线性偏微分方程。”
“只有找出一种对所有方程都通用的方程,才会是非线性偏微分方程新的破解方法。”
“五年前,我发现了齐次平衡法,这五年时间,我一直在对齐次平衡法的矫正和补充,现在我让你们看看我的研究成果。”
他也不怕卓越等人偷师,齐次平衡法现在还不是完美的,卓越等人需要齐次平衡法,他也需要别人给他提供一个思路。
而且,就算以后卓越等人完善了齐次平衡法,也会有他的一份功劳,他不相信卓越等人会独吞。
因为现在信息发达,就算卓越等人想独吞,都做不到的。
他完全可以提供自己创造齐次平衡法的时间和卓越等人在他这里学习齐次平衡法的证据,到时候这就成了一个丑闻。
说完他起身拉过来一块白板。
“我首先说一下,齐次平衡法的作用。”
“齐次平衡法,是解决非线性发展方程的精确解,既在常微分方程的基础上对微分方程的另一种偏微分方程精确解的求法。”
“下面我详细的写出来齐次平衡法的推演步骤!”
他拿起笔在白板上写着。
卓越三人站起身到白板附近,认真的看他写的内容。
【已知非线性偏微分方程,p(u,u?,u?,u??,u??,u?,。。。)=0……】
他放下笔,看着卓越三人,道:“齐次平衡法有两种情形,一种平衡阶数为负数的情形,另一种是阶数为分数的情形。”
“首先我讲解一下平衡阶数为负数的情形。”
“当m,n中存在负数时(不妨设其为负整数情形),我们可以假设m+n>0时
……
我们可以先对原方程做变换u=v^(-1)将原方程化为关于v的非线性偏微分方程。
这时,再利用齐次平衡方法解之。”
“下面,我用实例演算给你们看。”
【ut=(u2)??+p(u-u2)(2。2。1)
……
当c
?=1时,将导致负数解,这里略去。】
“这就是阶数为负数的平衡法,有什么问题,我们之后再议。”
他看到三人欲言又止,就说道:“下面我说一下阶数为分数的情形。”
“若平衡阶数m,n中有分数(不妨设其为正分数情形),我们可以先做变换v=au^1其中1为m的最简分式的分母与n的最简分式的分母的最小公倍数,a为任意常数。
也可直接假设。
张湖畔,张三丰最出色的弟子,百年进入元婴期境界的修真奇才。他是张三丰飞升后张三丰所有仙器,灵药,甚至玄武大帝修炼仙境的唯一继承者,也是武当派最高者。在张三丰飞升后,奉师命下山修行。大学生,酒吧服务员,普通工人不同的身份,不同的生活,总是有丰富多彩的人生,不同的遭遇,动人的感情,总是让人沉醉不已。武林高手...
一个现代人,来到了古代,哇噻,美女如云呀,一个一个都要到手,战争阴谋铁血一揽众美,逍遥自来快乐似神仙本书集铁血与情感于一身为三国类中佳品。...
生长于孤儿院的少年刘翰和几女探险时偶得怪果奇蛇致使身体发生异变与众女合体并习得绝世武功和高超的医术为救人与本地黑帮发生冲突得贵人相助将其剿灭因而得罪日本黑道。参加中学生风采大赛获得保送大学机会。上大学时接受军方秘训后又有日本黑龙会追杀其消灭全部杀手后又参加了央视的星光大道和青歌大赛并取得非凡成绩。即赴台探亲帮助马当选总统世界巡演时与东突遭遇和达赖辩论发现超市支持藏独向世界揭露日本称霸全球的野心为此获得诺贝尔和平奖而在颁奖仪式上其却拒绝领奖主人公奇遇不断出现艳遇连绵不...
书名?阅女无限??呵呵,广大银民,请看清楚哦。吴县,这个二十岁的青涩小子,进城上学,居然一不留神,取悦于众多美女,在众女的帮助下,事业也是蒸蒸日上。且看主角如何将有限的生命,投入到吴县的悦女事业中去。蹩脚的猪脚,由一个初哥,逐渐成为花丛高手。...
成仙难,难于上青冥!修真难,没有法宝没有丹药没有威力巨大的符箓,没有强悍的天赋。但是自从有了位面商铺就不一样了,有了位面商铺一切都有了。什么,修真界最普通的洗髓丹在你那里是绝世神丹!什么,你们那个位面遍地都是各种精金矿物,精铁灰常便宜!前世走私军火的商人,今生在修真界同样要将商人当做自己终生的追求。我只是一个做生意的,修炼真仙大道只是我一个副业。成为位面商铺之主,横扫诸天万界。商铺在手,天下我有!...
少年附身韦小宝,和康熙做兄弟,唬弄皇帝有一手绝色美女尽收,色遍天下无敌手!睿智独立,诱惑惊艳的蓝色妖姬苏荃花中带刺刺中有花的火红玫瑰方怡温柔清新纯洁可人的水仙花沐剑屏空谷幽香,善解人意的解语花双儿倾国倾城,美丽绝伦的花中之王牡丹阿珂诱惑惊艳美艳毒辣的罂粟花建宁空灵纯洁娇艳精怪的山涧兰花曾柔...